

As of July 2025

Made in USA

AMT is an Official Supplier

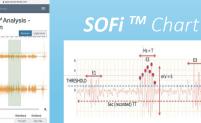
Common Hockey Injury Types Requiring Rehabilitation

- Concussion
- Ankle injuries
- o Groin strain
- Knee injuries
- Hip injuries
- AC joint separation (acromioclavicular joint)
- Shoulder injuries
- Fractures
- MCL injury (medial colateral ligament)

Types of Injury SOFi M^{2™}/AMG Can Help Diagnose

Concussion

- Ankle injuries
- o Groin strain
- Knee injuries
- Hip injuries
- Shoulder Injuries


SOFI M^{2 TM} Wireless Unit

SOFi TM Charger

SOFi M^{2 TM}

Taking Acoustic Myography to a Higher Power M

Baseline Assessment

- To aid in diagnostic assessment post-injury, it is highly recommended to obtain baseline assessments for each athlete.
- Like other medical modalities (imaging, lab testing, etc.) the ability to compare the post-injury results to a baseline study greatly increases diagnostic acumen with subtle findings
- However, even without referring to baseline studies in Musculoskeletal injury the ability to compare laterality (injured vs. noninjured) still makes post-injury musculoskeletal testing highly diagnostic

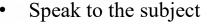
Concussion

- Without moving the subject, gently place the sensors on the lateral canthus and m.Flexor carpi radialis – use the hydrogel to hold the sensor in place. Connect up to the SOFi M^{2™} units and start the AMG protocol.
- ☐ Compare the results with the baseline values for this subject to assess the degree of concussion.

To be performed In Situation/On the Ice

AMG Sensor position	AMG protocol
Lateral Canthus	Blinking response – auditory cortex; "blinking center", visual recognition, blinking rate, weak/strong blinks
Forearm – flexor carpi radialis	Ask subject to clench their fist 2-3 times are hard as they can

Blinking response


SOFi M²™ Analysis - Eye

E S T Threshold Max T Max S

9.8 7.5 9.2 0.2 0.2 0.00 0.99 0

Attach a small *SOFI M^{2 TM}* sensor to the corner of the eye (see illustration) without moving the subject, after which the following tests should be executed:

Subject should blink (with blue spot only)

• (smart phone screen up close to the subject)

Observe the number of blinks

• Faint / forceful blinks 3 times

Auditory Cortex (temporal lobe)

"Blinking Center" – globus pallidus of the lenticular nucleus

Visual recognition (colour) – Ventral Occiptal lobe

+ optic nerve

Orbitofrontal Cortex - blinking rate

Cerebellum Cortex – forceful blinks with damage

Cerebrum – interprets sounds and sights
Cerebellum – coordination – fine motor skills (blinking)

Ankle injuries

- Once the subject is off the ice, gently place the sensors on the affected muscle/s e.g. m.Peroneus longus; m.gastrocnemius; m. soleus use the hydrogel to hold the sensor in place. Connect up to the SOFi M²™ units and start the AMG protocol.
- ☐ Compare the results with the baseline values for this subject to assess the degree of muscle strain.

AMG Sensor position	AMG protocol
Lower leg muscle – m.Peroneus longus	Ask subject to walk a few paces on a flat surface, ideally without shoes/skates
Lower leg muscle – m.Gastrocne mius	Ask subject to walk a few paces on a flat surface, ideally without shoes/skates

Groin strain

- Once the subject is off the ice, gently place the sensors on the affected muscle/s e.g. m.Adductors, Iliopsoas use the hydrogel to hold the sensor in place. Connect up to the SOFi M^{2™} units and start the AMG protocol.
- ☐ Compare the results with the baseline values for this subject to assess the degree of muscle strain.

AMG Sensor position	AMG protocol
Upper leg muscle – m.Adductor longus	Ask subject to walk a few paces on a flat surface, ideally without shoes/skates
Upper leg muscle – m.Adductor brevis, magnus, pactineus	Ask subject to walk a few paces on a flat surface, ideally without shoes/skates
Upper leg muscle – m.lliopsoas	Ask subject to walk a few paces on a flat surface, ideally without shoes/skates

Knee injury

- Once the subject is off the ice, gently place the sensors on the affected muscle/s e.g. m.Quadriceps, m.Biceps femoris, m.Semitendinosus use the hydrogel to hold the sensor in place. Connect up to the SOFi M²™ units and start the AMG protocol.
- ☐ Compare the results with the baseline values for this subject to assess the degree of muscle strain.

AMG Sensor position	AMG protocol
Upper leg muscle – m.Quadricep s	Ask subject to walk a few paces on a flat surface, ideally without shoes/skates
Upper leg muscle – m.Hamstring s (m.Biceps femoris, m.Semitendi nosus, m.Semimem branosus	Ask subject to walk a few paces on a flat surface, ideally without shoes/skates

Hip injury

- Once the subject is off the ice, gently place the sensors on the affected muscle/s e.g. m.Gluteus, Iliacus etc., Adductors use the hydrogel to hold the sensor in place. Connect up to the SOFi M²™ units and start the AMG protocol.
- ☐ Compare the results with the baseline values for this subject to assess the degree of muscle strain.

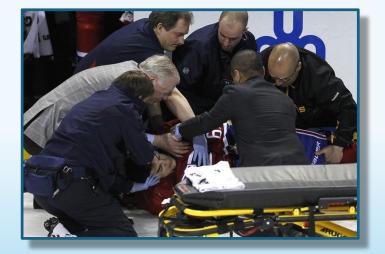
AMG Sensor position	AMG protocol
Hip muscles – m.Gluteal – maximus, medius	Ask subject to walk a few paces on a flat surface, ideally without shoes/skates
Hip muscles – m.lliacus, psoas major, rectus femoris	Ask subject to walk a few paces on a flat surface, ideally without shoes/skates
Hip muscles – m.Adductor	Ask subject to walk a few paces on a flat surface, ideally without shoes/skates

Shoulder injury

- □ For the assessment of mild to severe strain and sprain injuries – perform a baseline for all of the subjects at risk, prior to any training session or competition.
- Once the subject is off the ice, gently place the sensors on the affected muscle/s e.g.
 m.Supraspinatus, m.Deltoideus, m.Trapezius use the hydrogel to hold the sensor in place. Connect up to the SOFi M²™ units and start the AMG protocol.
- ☐ Compare the results with the baseline values for this subject to assess the degree of muscle strain.

AMG Sensor position	AMG protocol
Shoulder muscle - m.Supraspin atus, m.Infraspinat us, m.Teres minor, m.Subscapul aris	Ask subject to lift their arm from rest up to shoulder height, then above the head – both infront of the body and to the side
Shoulder muscle – m.Deltoideus	Ask subject to lift their arm from rest up to shoulder height, then above the head – both infront of the body and to the side
Shoulder muscle – m.Trapezius	Ask subject to lift their arm from rest up to shoulder height, then above the head – both infront of the body and to the side

Types of Injury *SOFi M*^{2™}/AMG does not Help Diagnose


- Acromioclavicular joint separation (AC Joint Injury)
- Fractures
- Medial Collateral Ligament injury (MCL Injury)

AC joint separation

□ The SOFi M²™ system is currently not able to measure an AC joint separation directly. As previously discussed, the sensors have been used in human subjects to assess changes in muscle activity around a shoulder joint in subjects with rotator cuff injuries, though – m.Supraspinatus, m.Infraspinatus, m.Teres minor, m.Subscapularis

Fracture

□ The SOFi M²™ system is currently being studied to diagnose injury within skeletal structures. Testing has already shown that sound waves of changing frequencies placed on the skin above bones can reveal their inherent structure and damage – fractures, demineralization etc. When this diagnostic tool has been fully evaluated and validated, we will update our recommendations about the use of AMG to diagnose fracture

o MCL injury

□ The SOFi M^{2™} system is currently not able to measure an MCL injury directly. The sensors have been used in non-human species to assess changes in muscle activity around a knee joint where the ligaments have been ruptured, though.

Treatment Protocols

- SOFi M^{2™} is a highly sophisticated diagnostic tool designed to identify, within a high degree of medical certainty, the conditions that are amenable to diagnosis by AMG.
- Treatment for diagnosed conditions should be at the direction of a licensed clinician, or follow a clinician approved protocol.
- Treatment recommendations are outside the scope of this presentation.
- Advanced Myographic Technologies does have licensed clinicians available for consultation on treatment protocols, if requested.

Contact Information:

www.myographytech.com

9081 NE Jacksonville Road **Suite 1302** Anthony, Florida 32617-1302

Office: (352) 456-8338 mail@myographytech.com

Taking Acoustic Myography to a Higher Power ™

Dr. Adrian Harrison aph@myographytech.com

Raymond Di Maria rsd@myographytech.com

Advanced Myographic Technologies info@myographytech.com

Official Supplier

BOC Approved Provider Lecture 4 AMG and Sports-Injury & Flyer.pdf