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(Celicanin et al. 2023; Pingel et al. 2019). The method of 
acoustic myography does not measure muscle force, but 
instead records the spatial- and temporal-summation of 
muscles whilst physically active, as well as the degree of 
efficiency/coordination (Bartels et al. 2020; Harrison 2017). 
Two of the parameters, however, have been shown to be 
very closely correlated with maximal voluntary force (Clau-
del et al. 2019).

Recently it was shown that for the biceps and extensor 
carpi radialis longus muscles of PD patients active move-
ment resulted in a lower spatial to temporal ratio signal (S: 
T ratio) relative to healthy controls, yet no significant differ-
ence between the patient and control groups was noted for 
the triceps muscle (Celicanin et al. 2023). These measure-
ments were carried out with acoustic myography (AMG). In 
the afore mentioned study, Celicanin and colleagues reported 
that the main finding was that the S: T ratio changed from 
being principally temporal summation (higher motor unit fir-
ing rate) in the healthy control group (HC), to being primar-
ily spatial summation (more motor units active) in the PD 
group, in m. biceps brachii and m. extensor carpi radialis 

Introduction

The aim of this review has been to re-examine the potential 
role played by muscle spindles in the muscle changes expe-
rienced by two neurological conditions, Parkinson´s dis-
ease (PD) and Cerebral Palsy (CP). In recent years, a novel 
approach of acoustic myography has evolved and been 
tested in clinical settings, where it has been shown to reveal 
muscle function changes in such conditions as PD and CP 
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Abstract
In some neurological conditions, like Parkinson’s disease (PD) and Cerebral Palsy (CP), as well as with ageing, muscle 
spindles have been mentioned as participating in the pathological response of observed muscles. The aim of this review 
has therefore been to examine what is known about muscle spindle receptors, their function and how they are involved 
in regulating precise muscle movement in relation to these two conditions. Data from acoustic myography (AMG) stud-
ies with healthy controls (HC), CP and PD subjects have been re-examined with a view to identifying possible effects 
of changes in muscle movement which could be related to muscle spindle receptor function. Studies of muscle spindles 
have shown that during shortening and lengthening contractions the fusimotor system is activated differently with different 
discharge frequencies and sensitivities. With increasing age comes a loss of precise proprioception, something that coin-
cides with a change in the AMG E-score towards lower values, indicating a reduced level of coordination and efficiency 
of muscle use. With PD and CP there is likewise a documented decrease in proprioception, also showing lower E-values 
than age-matched HC subjects. We conclude that the decrease in proprioception observed in these subjects must be partly 
due to a change in the muscle spindle / C-centre feedback system.
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longus – both of which are flexor muscles (Celicanin et al. 
2023). Flexors are muscles that primarily decrease the angle 
of a joint, whilst extensors do the opposite and increase the 
angle of a joint. Celicanin and colleagues likewise noted 
that m. triceps brachii did not show any differences in AMG 
scores between the two subject groups during elbow move-
ments (Celicanin et al. 2023).

This interesting difference between m. biceps brachii and 
m. triceps brachii in PD patients may be indicative of an 
underlying neural innervation difference between flexors 
and extensors. This thought is supported by the finding of an 
improvement in resting elbow joint angle following medi-
cation (Marusiak et al. 2018), and favouring the idea that 
rigidity is present to a higher degree in flexors than in exten-
sor muscles in PD subjects, possibly as a result of a higher 
resting tone of the flexor muscles cf. extensors (Andrews et 
al. 1972).

Another neurological condition that affects muscle func-
tion is CP. AMG recordings have shown that CP subjects 
have a significantly lower initial S-score (spatial summa-
tion) than that of healthy matched controls. Neither the 
T-score (temporal summation) or the E-score (efficiency) 
were found to be different from the healthy control group. 
The results point to a change in the recruitment of skele-
tal muscle fibres with CP, such that affected subjects use a 
higher degree of spatial summation (more fibres recruited) 
to maintain the same treadmill performance as that of the 
controls (Pingel et al. 2019).

Muscle spindle function

Muscle spindles are specialized modified muscle fibres that 
act as sensory receptors, sending information about muscle 
length, speed of stretch as well as perceived effort to the 
central nervous system. The combined information pro-
vided by muscle spindle receptors is then used to determine 
the position and movement of our joints (proprioception). 
As muscle spindles react to changes in muscle length, they 
are also involved in the regulation of muscle contraction 
(Santuz and Akay 2023).

Of considerable interest are the older findings of Burke 
and colleagues, who looked into muscle spindle function. 
They noted that during shortening contractions the fusimo-
tor system is activated together with the skeleto-motor sys-
tem (Burke et al. 1978). However, the fusimotor drive is 
generally insufficient to maintain a significant spindle dis-
charge unless movement is slow, or the muscle is shorten-
ing against an external load (isotonic contraction) (Burke et 
al. 1978). These authors also noted that during lengthening 
contractions (eccentric) the spindle responses were greater 
than observed during passive stretch of a similar amplitude 

and velocity, suggesting heightened fusimotor outflow. 
Indeed, they were able to measure the mean discharge from 
a dynamic spindle ending in the tibialis anterior muscle dur-
ing voluntary movement to be in the order of 7.5 per second 
during stretch, but only 1.0 per second during shortening, a 
difference that disappeared with loading (Burke et al. 1978).

These findings raise the question as to whether the motor 
activity of flexion or extension results in different firing rates 
for the muscle spindles embedded within these muscles. 
One potentially important consequence of such a difference 
would be to have a protective effect, sending frequent sig-
nals back to the central nervous system (CNS) every time a 
muscle is extended whilst contracting, presenting a risk of 
damage, yet sending relatively few signals when a muscle 
is shortened under contraction, simply because the risk of 
injury is so much less with such motor activity.

An overview of a typical muscle spindle is given in 
Fig. 1.

The C marked on panel (A) of Fig. 1 represents a Control 
Centre in the region of the spinal cord (location yet to be 
determined by histology) that senses Ia / II afferent signals 
and integrates them with signals from the fusimotor system 
(𝛾 efferent and probably also β  efferent), such that any sig-
nal in excess of the fusimotor signal constitutes a kinesthetic 
signal (McClusky et al. 1983). Various models have been 
proposed for the function of the region we refer to as C, 
such as a Signal Processing Area facilitating sensory motor 
performance in a task specific way and not only a measure-
ment of posture and movement (Dimitriou and Edin 2010). 
Another model presents Forward Mediated Processing, cre-
ated by interaction changes in length of muscle spindles and 
their adaptive response, used for perception of effort (Monjo 
and Allen 2023). Others have even suggested that there is 
evidence for the abundance of muscle spindles in regulat-
ing muscle contraction (Kissane et al. 2022). Kinesthetic 
signals are more commonly known today as propriocep-
tion, a system whereby feedback sensations relating to body 
position, movement and the position of body parts relative 
to each other are combined with muscle contractions. One 
could even speculate that stiffness or contracture in a muscle 
may to some extent be due to a mismatch between spindle 
signals arriving at the C-cell. Furthermore, the motor excita-
tion signal as well as any other regulatory signal arriving at 
the C-cell, may override part of, or all of the spindle signal, 
and together these signals determine the degree of overall 
muscle contraction.

Intrafusal muscle spindles are stretch receptors whose 
function is to correct for changes in muscle length when 
extrafusal muscle fibres are either shortened (under contrac-
tion) or lengthened (under stretch). Such muscle spindles 
and their reflexes operate to return extrafusal muscle to its 
resting length after it has been shortened or lengthened, 
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as well as to maintain length-tension at its optimal setting 
(Winters et al. 2011). In terms of sensory innervation, each 
intrafusal muscle spindle consists of either a Ia or II afferent 
nerve, which innervates the central region of the nuclear bag 
fibres (dynamic/static: Ia) or the nuclear chain fibres (static: 
II) (see Fig. 1B). It is important to note that the Ia fibres 
are among the largest nerves in the body with some of the 
fastest conduction velocities (80–120 m/s), whilst II fibres 
have intermediate diameters and intermediate conduction 
velocities (33–75 m/s). Motor innervation of the intrafusal 
muscle spindles consists of two types of γ motor neurones 
(both dynamic and static), where dynamic γ motor neu-
rones synapse on the nuclear bag fibres, and static γ motor 

neurones synapse on nuclear chain fibres which spread over 
longer distances. It is worth noting that γ motor neurones are 
smaller and slower than the α motor neurones that innervate 
the extrafusal fibres, and they serve to regulate the sensitiv-
ity of the intrafusal muscle fibres they innervate (Prochazka 
and Hulliger 1983).

In the feline it has been shown that β motor neurone 
fibre stimulation is widespread and functionally significant. 
Moreover, spindle morphology in man points towards great 
similarity between spindle function in the cat and rat (Pro-
chazka and Hulliger 1983) suggesting that β motor neurone 
fibre stimulation may also be present in man, and could per-
haps be a common mammalian feature?

Fig. 1 An overview of intrafusal muscle spindles. (A) illustrates the 
link between extrafusal and intrafusal innervation, including 𝛼 efferent 
motor neurone innervation to extrafusal fibres and 𝛾 efferent innervation 
to the muscle spindles. Note also the Ia / II afferent innervation from 
the muscle spindles back to the CNS and more specifically to a region 
we have referred to as C (Control Centre; see (McClusky et al. 1983) 
where there is both a negative stimulus from the 𝛾 efferent neurone and 
positive stimulus from the Ia / II afferent neurone. (B) provides an over-
view of the types of static and dynamic muscle spindles found associ-

ated with extrafusal fibres and their efferent and afferent innervation. 
This figure does not illustrate the β motorneuone efferent fibre
innervation. This innervation comprises combined static/dynamic 
fibres showing both extrafusal and intrafusal fibres. γ motorneurones 
have the sole function of addressing fusi-motion. Spindle α motorneu-
rones are solely extrafusal fibre related and are skeleto-motor in func-
tion. β motorneurones can be skeleto-motor and fusi-motor, but never 
fusi-motor alone. (Source & Copyright EMB & AH)
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contraction of a joint is retained, an element of inaccuracy is 
introduced whilst the limb is in movement.

With advanced PD the responses to mechanical vibra-
tions of the Ia afferents become compromised, and this is 
not improved by medication such as L-3,4-dihydroxypheny-
alanine known medically as levodopa DOPA (Valkovic et 
al. 2006). This change may further be linked to the grow-
ing dependency on visual inputs to carry out certain types 
of movement as the disease progresses (Lee 1989), and the 
precision with which movement and location of the limb 
relative to the joint are compromised. The precise signal-
ling behind this change is still not clear, but they might be 
a further development of the phenomenon associated with 
changes in Ia signalling (dynamic: bag fibres). In support 
of the findings with PD patients, it has been found in the cat 
that DOPA administration resulted in an enhanced muscle 
spindle activity in the static state for both flexor and exten-
sor muscles, yet in the dynamic state the activity of flexor 
muscles was depressed (Prochazka 1981; Johansson et al. 
1995). Furthermore, it has been shown that autogenetic 
reflex effects from large muscle afferents are relatively weak 
in the spinal cat treated with DOPA (Prochazka 1981). This 
is in accordance with the difference in diameter of the affer-
ent nerves (Ia vs. II).

Acoustic myography (AMG) data and possible 
connection to PD spindle behaviour

Focusing on possible changes in the function of muscle 
spindles in PD, the AMG data from Celicanin et al. (2023) 
tell a story on their own. The AMG data in Table 1 are 
directly taken from the Celicanin et al. (2023) study. The 
AMG parameters are efficiency (E-score), spatial- (S-score) 
and or temporal-summation (T-score) given by the E-, S-, 
and T-scores. As an overall measure of muscle function, 
the combined mean EST score (Mean EST = E-score + S-
score + T-score / 3) is shown. It is interesting to note that 
L-DOPA administration to PD subjects improves their over-
all muscle function (see Table 1; Mean EST). However, the 
PD patients do not reach the same level of mean EST as 
the healthy controls, whether this be for passive or active 
movements. Indeed, the mean EST values typically reach 
a level of 66–75% of the healthy controls. Clearly then the 
discrepancy must be with an altered efficiency, spatial- and 
or temporal-summation (E-, S-, T-score). For the m.Triceps, 
both for passive and active activity, the discrepancy is found 
to be a combination of all three parameters, which remain 
lower than comparable values for healthy matched controls.

It is also interesting to note that for m.Triceps the passive 
to active ratio (P: A) returns to healthy control values for the 
E-score, whilst the S-score ratio is higher and the T-score 
ratio lower than that of healthy matched controls, indicating 

The afferent signal from muscle spindles is generally 
classified as being both by a primary (Ia) and a second-
ary (II) motorneurone based on their differences in their 
dynamic sensitivities to stretch (Hagbarth 1993). At resting 
length discharge rates for muscle spindles are often mea-
sured to zero, and during stretch at a constant level of force 
the discharge rate has been shown to be typically less than 
25 per second (25 Hz). Under conditions where subjects 
voluntarily applied the fastest stretch possible, the peak rate 
of discharge was less than 100 Hz and more often less than 
50 Hz (Prochazka and Hulliger 1983).

Position sensitivity for muscle spindles and the afferent 
signal from relaxed muscles is very low (0.18–0.28 Hz) 
per degree of joint movement (Prochazka and Hulliger 
1983). Some loss of sensitivity may occur as a result of the 
known decrease in the number of intrafusal fibres as well 
as the increase in capsular thickness, and signs of denerva-
tion in some spindles, all of which occur with increasing 
age (Swash and Fox 1972; Liu et al. 2002). Findings that 
lend support to a loss of sensitivity in muscle spindles with 
increasing age causing the known decrease in accurate pro-
prioception (Lord et al. 2019).

With PD, Camptocormia, which is an axial thoracolum-
bar deformity, may result in a bent back angle (Schulz-
Schaeffer 2016; Bloch et al. 2006). For this to happen, the 
sensory input from muscle spindles and joint receptors 
which gives a sense of joint position, of movement and 
the sense of muscle strength, is most likely compromised. 
In PD an impaired proprioception has been demonstrated 
and could be part of the underlying cause for occurrence 
of camptocormia (Bloch et al. 2006). Keeping in mind that 
the muscle spindle system is mature already at a young age 
(Österlund et al. 2011), and that PD patients typically dem-
onstrate perfect healthy motoric skills during a substantial 
part of their life, this raises the question as to whether and 
indeed when changes in spindle activity and possibly struc-
ture take place with PD. This could, moreover, provide an 
early diagnosis for this disease. Accepting the hypothesis 
that muscle spindles participate in regulating muscle con-
traction, then AMG measurements of suspected CP or PD 
individuals where the clinical studies to date show a change 
in the S: T to values less than 1.0 (Celicanin et al. 2023; 
Pingel et al. 2019), might prove a useful technique for mea-
suring this (see below, Table 2).

Furthermore, it would be of particular value if it was 
possible to slow down the development of such proposed 
changes in the PD spindle system. In healthy subjects 
exposed to eccentric exercise to the point of fatigue, muscle 
spindles still give the correct information concerning limb 
position, although some dynamic position error occurs (Cel-
icanin et al. 2023). This would mean that whilst the angle of 
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Acoustic myography (AMG) data and 
possible connection to CP spindle behaviour

When comparing the PD data with Cerebral Palsy (CP) data 
from Pingel et al. (2019), it was found that the E-score in 
CP was the same as that in the healthy controls (HC) group. 
The S-score revealed a significant difference between the 
CP subjects, who show a lower initial score, compared with 
the HC group, who had a higher initial score (P < 0.01 to 
P < 0.05). This finding indicates that the CP subjects have 
a higher degree of spatial summation to maintain the same 
speed of treadmill activity than the control subjects, i.e. they 
were recruiting significantly more fibres than the controls. 
The T-score was found to be the same for the CP and the HC 
group. Initially, the T-score of 8.0, which equates to a firing 
frequency of 51 Hz, was found after 30 min of treadmill 
exercise to change to a T-score of 7.1, which equates to a 
firing frequency of 73 Hz. The actual S-score values for the 
CP subjects were; 6.25 ± 0.74, 6.03 ± 0.84 and 5.94 ± 0.96 
at 1, 5 and 9 min of exercise, respectively, compared with 
values of 7.42 ± 0.80, 7.34 ± 0.81 and 7.29 ± 0.84 for the 
healthy controls at the same times.

The results for both PD and CP subjects suggest that the 
S: T ratio in both groups is affected such that values fall 
below 1.0. This makes them different from healthy controls 
where the S: T value is always greater than 1.0 (typically 
1.4 or higher, except during exercise to exhaustion). This 
change in the S: T arises because the T-score is higher than 
the S-score. In CP the T-score does not differ significantly 
from that of the healthy controls throughout the period of 

a persistent altered function, but one that most likely does 
not affect muscle spindles.

Despite the fact that PD patients seem to have a nor-
mal muscle function following medication, the EST mean 
reveals that they are over-working their muscles compared 
to age-matched controls. This is the case for both the exten-
sor and the flexor muscles. Medication clearly improves 
the PD condition, but the treatment does not restore muscle 
function to the same level as that found in HC. The E-score 
following medication is the same for PD as for HC, whilst 
the S-score is higher and the T-score lower than that of HC, 
indicating a persistent altered function.

For the m.Biceps and passive activity the discrepancy 
is likewise to be found as a combination of all three AMG 
parameters, which remain lower than comparable values 
for the HC group, yet under active movements this mus-
cle shows a lower E- and S-score, but a higher T-score. It 
was noted that for m.Biceps the passive to active ratio (P: 
A) returns to HC values for the S-score following medi-
cation, whilst the E-score is higher and the T-score lower 
than that of healthy matched controls, also indicating a per-
sistent altered function. In consideration of these findings, 
one could suggest that for Biceps the change in P: A for the 
E-score most likely indicates a spindle effect, which could 
represent the chain fibres working normally but the bag 
fibres (dynamic) being partly disrupted. Interestingly, such 
changes are also observed with fatigue, as mentioned earlier 
(Grose et al. 2022).

Table 1 Additional calculations, using the data in (Celicanin et al. 2023). The AMG parameters E- S- and T- plus the mean EST, as well as S: T 
and the relation between Passive: active (P: A) for S, T, and E, are given for healthy age matched control subjects (HC) and Parkinson´s disease 
subjects (PD) for muscles triceps and biceps for both passive and active movements. Mean age of the healthy controls was 68.5 ± 7.3 years and 
of the PD subjects was 68.5 ± 7.3 years. PD0 are data from PD who have not received medication, PD3 are data from PD who received L-DOPA 
three hours before measurement.Values are means ± standard deviation
Muscle Movement E-score S-score T-score S: T Mean 

EST
Explanation
PD vs. C

m.Triceps Passive HC 5.0±2.5
PD0 2.3±3.1
PD3 2.1±2.4

HC 9.2±0.4
PD0 5.4±3.6
PD3 7.0±2.6

HC 6.5±2.2
PD0 4.5±1.7
PD3 4.7±2.2

1.4
1.2
1.4

6.9
4.0
4.6

Increased spatial and tem-
poral summation, lower 
efficiency with PD0

Active HC 4.4±2.4
PD0 1.6±3.0
PD3 1.9±2.6

HC 8.8±0.5
PD0 4.7±3.4
PD3 4.9±3.4

HC 4.8±2.3
PD0 4.6±1.8
PD3 5.2±1.9

1.8
1.0
0.9

6.0
3.6
4.0

Increased spatial summa-
tion and lower efficiency 
with PD0

P: A HC 1.1
PD0 1.4
PD3 1.1

HC 1.0
PD0 1.1
PD3 1.4

HC 1.3
PD0 0.9
PD3 0.9

- - Mostly similar Passive 
to Active ratio for C and 
PD0 for S-score

m.Biceps Passive HC 2.6±1.9
PD0 0.9±1.2
PD3 2.0±2.2

HC 8.6±1.2
PD0 3.7±3.3
PD3 5.4±3.4

HC 5.2±1.8
PD0 4.5±1.7
PD3 4.6±1.4

1.6
0.8
1.1

5.4
3.0
4.0

Increased spatial and tem-
poral summation, lower 
efficiency with PD0

Active HC 2.4±1.1
PD0 0.4±0.4
PD3 1.3±2.1

HC 7.3±2.2
PD0 3.4±3.3
PD3 4.0±3.6

HC 3.8±1.4
PD0 4.9±2.4
PD3 5.1±1.9

1.9
0.7
0.7

4.5
2.9
3.4

Increased spatial summa-
tion and lower efficiency 
with PD0

P: A HC 1.1
PD0 2.2
PD3 1.5

HC 1.2
PD0 1.1
PD1 1.3

HC 1.3
PD0 0.9
PD1 0.9

- - Mostly similar Passive to 
Active ratio for HC and 
PD0 for S-score
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exercise. The significant difference between the S-score of 
the CP subjects and that of the controls was only seen for 
the first 10 min of exercise. Following this, the healthy con-
trols showed exhaustion and an S: T below 1.0 (Pingel et 
al. 2019).

Discussion

Whilst a lot remains unknown about muscle spindle recep-
tors, their regulation and control, there is now evidence 
from clinical and animal studies that implicates them in nor-
mal muscle function, as well as the diseased state.

Regulation of muscle contraction with PD, involves fine 
motor control, rigidity, tremor and a loss of propriocep-
tion. AMG recordings for PD detect a lower E-score, which 
means that muscles are active more of the time for any 
given function compared with a HC group of the same age, 
most likely inducing early fatigue as a consequence. This 
is in accordance with our earlier study (Bartels et al. 2020) 
which found the following E-score values for young ver-
sus older healthy subjects: Biceps flexion: E-score for HC 
aged 20–29 = 5.9±2.4 vs. 60–69 = 2.4±1.1; Triceps flexion: 
E-score for HC aged 20–29 = 6.9±2.1 vs. 60–69 = 4.4±2.4; 
Gastrocnemius cycling minimal load: E-score for HC aged 
20–29 = 6.6±1.9 vs. 60–69 = 1.4±1.3. The finding for this 
change in E-score for both PD as well as HC with aging 
indicates that the regulation of muscle contraction is not 
optimal, pointing towards impaired coordination/efficiency 
of muscle use, which may involve the spindle system. 
One could speculate that such a compromise to the muscle 
occurs at the C-cells and the interpretation of incoming Ia 
/ II afferent signals in relation to incoming motor neurone 
signals, resulting in a loss of smooth and efficient muscle 
contraction.

It has been found that vibration applied to the body has a 
beneficial effect on muscle balance (Cochrane 2011; Volpe 
et al. 2014). Cochrane used vibration platforms or small 
devices intended to vibrate tendons or other body parts, for 
example handheld vibrating dumbbells (0–30 Hz), or verti-
cal sinusoidal vibration (SV) devices used during dynamic 
movement (joint movement 5-35o; SV forward 5–65 Hz). 
In PD muscle, tremor (range 5–10 Hz) is a typical symp-
tom and it is relatively resistant to attempts to reset it using 
mechanical perturbation (Lee and Stein 1981). Perhaps this 
may be due to altered feedback from muscle spindles, for 
example Ia (bag fibres) and/or C cell inhibition or damping? 
The AMG results for PD and older healthy subjects points 
towards a less efficient muscle use (low E-score) which very 
likely could be an effect of altered function of the chain 
fibres. Such a change could be expected to give a subject 
an impaired perception of the true starting position of any 
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task, with a disproportionate recruitment of muscle fibres 
(low AMG S-score) and a tendency to activate muscle fibres 
for a longer period of time than actually required (low AMG 
E-score) giving rise to premature muscle fatigue.
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