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Abstract 

Running is one of the most popular forms of exercise. Even though regular 
exercise is beneficial to human health, running is also often associated with 
an increased risk of injury. Lack of shock absorption in running shoes has of-
ten been stated as one of the main reasons for why running-related injuries 
have been on the increase. The aim of the present study was to assess the de-
gree to which ground reaction forces (GRF) can be dissipated in the human 
leg in a barefoot subject, in connection with diverse physical activities. Acoustic 
myography (AMG), a non-invasive technique that records pressure waves 
from contracting muscles as well as the harmonic damping of ligaments, was 
applied to four anatomical sites on the subject’s leg, during barefoot walking, 
jogging, running and jumping. The data for walking on a hard surface show 
much lower ESTiTM parameters than those for the soft surface, and these low-
er values are observed mainly for sites 1 (toes; 65%) and 2 (ankle; 53%), re-
spectively. AMG parameters for jogging reveal this gait to have very low ES-
TiTM parameters for site 1 and site 2 (ESTi 2 - 3), yet similar for both surfaces. 
The data for running on a hard and soft surface revealed much lower ESTiTM 
parameters (38%) than those for sites 3 (knee) and 4 (hip). The data from the 
big jump, reveal that on a hard surface, the lowest ESTiTM parameters were for 
sites 1 (toes; 46%) and 2 (ankle; 27%), compared to values on a soft surface. 
The speed with which GRFs were transmitted up the leg varied from site to 
site and also with the type of activity, ranging from undetectable to approx. 
60 m/sec. The present study reveals that the ankle joint is exposed to the 
greatest forces during jumping and running. In addition, this study has con-
firmed that exercising on a hard surface does indeed increase the stress forces 
on the toes and ankles. It is interesting to note that the data reveal that toes 
and ankles absorb most of the GRF during running, while the knee and hip 
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joint remain unaffected, although a more detailed study involving a larger 
number of subjects and shoe types is now needed. 
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1. Introduction 

It is known that leg stiffness is constantly assessed and adjusted during periods 
of physical activity [1]. Indeed, muscles in the foot and around the ankle are 
known to play an important role in support, postural balance and dynamic sta-
bility [2]. 

Whilst mechanical stress in the foot and lower limb can be alleviated by use of 
correct footwear [3], others have suggested that footwear per se may in itself re-
duce the activity patterns of supportive muscles compared with a barefoot state 
[4].  

In addition to the type of footwear a subject selects, it is also known that step 
parameters and kinematic measurements can be affected by the type of surface 
an individual exercises on [5]. Ferris and coworkers [1] showed that human 
runners adjust the stiffness of their supportive leg during steady state running in 
accordance with the type of surface on which they are exercising. Other studies 
are less clear cut and tend to contradict each other with regards to lower extrem-
ity biomechanics when running on different surfaces [6]. For example, Tessutti 
and colleagues [7] reported that running on hard surfaces such as asphalt or 
concrete increases the peak pressure and decreases the contact time of a runner’s 
limb compared to running on grass. These authors went on the conclude that 
running on a grass surface with very little stiffness, may serve to allow the body 
to better attenuate forces by increasing contact time and decreasing stride length 
[8]. In a study of 15 recreational runners aged approx. 20 years (7 men; 8 wom-
en), measurements made during both fast and slow track runs revealed that the 
pronation excursion, the braking and the impact were significantly greater when 
compared to values from the same individuals whilst undertaking a grass run [6]. 

The aim of this study therefore was: 1) to assess the suitability of acoustic 
myography as a technique for assessing how ground reaction forces are dealt 
with in key sites up the human lower limb, and 2) to determine differences be-
tween these key anatomical sites with gaits of increasing intensity.  

2. Materials and Methods 

Ethical Approval 
The method applied was non-invasive, and the study followed the guidelines 

set by the Helsinki Declaration 2013  
(https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-princi
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ples-for-medical-research-involving-human-subjects/). 
Subject 
One healthy and trained subject participated in this study, with the following 

details: gender female, age39 years, weight 60 kg, BMI 22.3.  
Activities 
The subject was measured whilst physically active and engaged in a number of 

diverse gaits without shoes, which included, walking, jogging, running and a big 
jump on the spot. These diverse gaits were measured for both a hard and smooth 
concrete floor, as well as for a soft grass lawn, with an irregular surface. The or-
der of measurement was as follows: walking without shoes on a hard surface, 
jogging on a hard surface without shoes, running on a hard surface without 
shoes, a big on the spot jump without shoes, after which all of these were re-
peated on a soft surface. 

Recordings 
Acoustic myography (AMG) is a biomechanical method measuring generated 

pressure waves from a contracting muscle [9] [10]. AMG recordings were car-
ried out with a CURO unit and CURO sensors (CURO-Diagnostics ApS, Den-
mark; formerly MyoDynamikApS) and followed in real time on an iPADAir 
(Apple Inc., Cupertino, CA, USA) via the App “CURO Clinic” and a specialized 
data recording system. This allowed us to see the actual wave recordings and the 
ESTi score while recording. We used 50 mm sensors with a frequency recording 
range of (0.5 - 20) ± 0.5 kHz, and the sampling rate was 4 kHz. Recorded data 
was stored to the CURO Unit and after completion of measurements transferred 
to the CURO software (https://app.myodynamik.com). The ESTi-score with its 
three components: 1) efficiency (E-score) 2) temporal fibre recruitment (T-score) 
and 3) spatial fibre recruitment (S-score), was calculated using the company 
software [9] [10].  

As an example, the S-score was determined as the signal amplitude in relation 
to a full 6 dB signal (measured as approx. 1 V). For more intuitive assessment of 
optimal muscle function, a scale of 0 - 10 was adopted, where 0 was considered 
as 0% optimal and 10 was considered 100% optimal. To calculate the score, the 
measured mV amplitude was subtracted from the maximal mV amplitude that 
could be accurately detected. The difference was then divided by the maximal 
amplitude and multiplied by 10 to yield a 0 - 10 scoring system. By way of an 
example, an S-score of 8 represents a signal with a very small amplitude (approx. 
0.3 V), whereas an S-score of 1 represents a relatively large amplitude signal 
(approx. 0.7 V). The T- and E-score was calculated in a similar way to their full 
signal to give a score scale from 0 - 10, where 0 is full activity and 10 is no activity. 

Measurement locations 
All measurements were taken from the left leg, and without shoes. A 20 mm 

sensors (CURO-Diagnostics ApS, Denmark) in connection with a CURO unit, 
was used for AMG measurements which were carried out at the level of the big 
toe (the joint between 1st proximal phalanx and the 1st metatarsal; 1), the ankle 
(medial malleolus; 2), the lower leg (tibial tuberosity; 3) and the hip (iliac crest; 
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4). Site 2 was 12 cm away from site 1 and 5 cm above the ground, site 3 was 38 
cm away from site 1, and site 4 was 93 cm away from site 1. 

Statistical Analysis 
Owing to the fact that the data were collected from just one subject, no statis-

tical tests were performed. Differences are expressed as percentage change either 
compared with a soft surface, or between recording sites. 

3. Results 

AMG parameters 
The data obtained whilst walking on the hard surface show much lower E, S 

and T parameters than those for the soft surface, and these lower values are ob-
served mainly for sites 1 and 2 (see Figure 1(a)). Interestingly, when walking on 
your toes on either a hard or a soft surface, the S and T scores for site 1 greatly 
improve, but worsen for site 2, and remain optimal for sites 3 and 4.  

AMG parameters measured during jogging reveal very low E, S and T scores 
for site 1 and site 2 whether the subject is jogging on a hard or a soft surface (see 
Figure 1(b)). 

Recordings made from the subject when running revealed that most of the 
GRF is being absorbed at site 2, that site 1 is very comparable to the values ob-
tained for walking on a flat hard surface (see Figure 1(c)). 

Data for the big jump reveal that on a hard surface, the lowest E, S and T 
scores were for site 2, and that on a soft surface the values at site 2 were greatly 
improved and similar to those for site 1 (see Figure 1(d)). 

GRF transmission velocity 
 

 
Figure 1. An overview of the combined ESTiTM-score for the AMG signals at sites 1, 2, 3 
and 4, for (a) Walking, (b) Jogging, (c) Running and (d) Big jump, for a subject on a hard 
z and a soft surface {. 
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The speed of transmission of the GRF through the left leg was found to range 
from undetectable to having a speed of 13 - 42 m/sec at site 2, depending on the 
type of activity (see Figure 2). The speed of transmission of the GRF through the 
left leg was found to range from undetectable to having a speed of 20 - 66 m/sec 
at site 3, depending on the type of activity. The speed of transmission of the GRF 
through the left leg was found to range from undetectable to having a speed of 
18 - 62 m/sec at site 4, depending on the type of activity. 

In terms of walking, the speed of transmission of the GRF was found to be 3.4 
- 3.5 m/sec on a hard surface, to 1.8 - 2.2 m/sec on a soft surface. 

4. Discussion 

The present study has shown that acoustic myography as a technique, is quite 
capable of assessing the signal strength and the transfer of ground reaction 
forces through key sites in the human lower limb. Moreover, using this tech-
nique we have been able to determine signal differences between four key ana-
tomical sites, when comparing gaits of increasing intensity. 

The data presented in Figure 1 reveal that in general there are higher ES-
TiTM-scores for sites 3 and 4, rather than 1 and 2. This means that a higher ES-
TiTM-score represents a small amplitude signal, in other words, it demonstrates 
that the GRF signal has been adequately damped by the time it reaches the knee 
and the hip (sites 3 & 4, respectively). The data also reveal that the signal is often 
worst (lower ESTiTM-score) for site 2 (ankle), and particularly when recorded on 
a hard surface. This is particularly interesting since it has been published that 
foot and ankle injuries in sport remains very common with incidences of ap-
prox. 35 in association football, 14 in rugby and 14 in American football per 
1000 people per hour [11]. 

Of interest in this study, is the finding that a comparison of barefoot walking 
clearly poses less of an impact on the foot and ankle when performed on a soft 
surface compared with a hard surface. Barefoot running has become popular 
since it has been associated with an increased energy storage in the runner’s arch 
[12]. Moreover, it has been concluded that barefoot running does not increase 
the relative injury rate of runners, compared with those wearing running shoes  
 

 
Figure 2. A plot of the conduction velocities for the AMG signals between sites 1 and 2 
for different gaits on both a hard and a soft surface. 
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[13]. However, in contrast, another study reported that there is an increased 
muscle activation and impact acceleration in the tibia of barefoot runners, which 
when combined highlights a potential risk of injury compared to those running 
with shoes [14]. 

In a recent study, is was stated that training shoes, which have a thick and 
well-cushioned midsole, are the most common type of running shoe [15]. This is 
of interest, since a study of racing flats, which are thought to have less cushion-
ing, documented that plantar pressures and associated forces are greater for rac-
ing flats than for training shoes [16]. These authors went on to conclude that 
racing flats are associated with a higher risk of stress fracture of the metatarsal 
bones compared to training shoes [16]. However, in another study it was re-
ported that whilst shoe construction changes mechanical demands whilst run-
ning, runners quickly become habituated to the demands of a given shoe [17]. 

In Figure 2 we show that the conduction velocity of the AMG signal increases 
in a more or less linear fashion with the level of intensity of physical activity: 
walking to jogging to running to jumping. This study reveals the clear increase 
in the speed with which the GRF signal is transmitted from the point of impact 
up through the limb from a relatively slow rate (3.4 - 3.5 m/sec on a hard sur-
face/1.8 - 2.2 m/sec on a soft surface) when walking, to a much faster rate (40 - 
60 m/sec on a soft surface) when running or jumping on the spot. In a study of 
runners with a prosthetic running blade it was found that changing the elastic 
properties of the blade itself had an impact on the runners approach angle and 
their ground reaction force, but interestingly, it did not affect their limb stiffness, 
which was comparable with that of healthy controls [18]. This observation is 
most likely the result of pre-tensioning within the muscles and ligaments of the 
limb during relatively high-speed activities, and is supported by the finding that 
running speed is linearly associated with limb stiffness [19]. Mauroy and col-
leagues [20], measuring blade prosthesis properties in transfemoral amputees 
also showed that not only does the stiffness of a prosthetic blade change with in-
creasing running speed, but that the stiffness of the limb muscles (hip muscles) 
increased too. 

The present studies observation of conduction velocity differences with gait 
and physical intensity is supported by a study of the use of flip-flops, which 
showed that wearers had a significantly slower walking speed, a higher ankle and 
sub-tarsal joint range of motion and higher shear ankle joint contact forces than 
individuals wearing sports shoes [21]. Thus, the use of flip-flops, forcing the 
wearer to move at a slower speed, might be expected to result in a relatively less 
stiff foot and ankle, a slower conduction velocity and a lower GRF, all of which 
might be expected to reduce the incidence of training injury. Indeed, it has been 
estimated that for runners covering between 50 and 70 miles a week, there is a 
50% chance of knee injury due to repetitive loading of the joint, furthermore it is 
mentioned that the material used to construct the midsole of runners shoes is 
the limiting factor in terms of shoe performance, and that this must be improved 
in order to offer runners a more long-term form of protection [22]. It should be 
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noted, however, that running shoes built with extreme cushioning and an over-
sized midsole (referred to as maximalist shoes) have not been found to lower the 
external impact loading when compared to traditional running shoes [23]. There 
is now a great need for further studies using AMG with a larger sample size, as 
well as different shoe and surface types.  

5. Conclusion 

This preliminary study suggests that barefoot walking is not a very comprehen-
sive gait for the ankle but is better than both jogging and running for the toes 
when a subject is walking on a soft surface. Jogging results in a low ESTiTM-score 
for all 4 measured sites compared with walking, even on a hard surface, and 
should therefore be seen as a relatively high impact gait for someone who is ba-
refoot. The same can be said for running, although in contrast with jogging, this 
gait apparently has less impact on the knee and hip joints. Finally, anything in-
volving a big jump on the spot on a hard surface, clearly has a huge impact on 
the ankle. 
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